
1

Let me begin by introducing myself. I began working with Progress in 1984
and I have been a Progress Application Partner since 1986. For many years
I was the architect and chief developer for our ERP application. In recent
years, I have refocused on the problems of transforming and modernizing
legacy ABL applications. To transform an application, one must first
understand the application. That, and a long history of modifying existing
systems is the background for today’s presentation.

We are going to cover a lot of ground today. This means that I am going to
point to a lot of possibilities and try to give you an idea of how it might be
useful to you, but I’m not going to go into detail on any one tool. Hopefully, I
can make you aware of what is possible and you can apply this to your own
work.

2

So, here’s our agenda for today. First we are going to talk a bit about the
problem and why it is important and then we are going to go through some
broad categories of analysis problems and what tools there are to solve
them.

3

First, let’s talk a little about why analysis is important.

Knowing the desired behavior for a program modification is only part of the
problem. One also needs to know where to change the behavior and the
impact of making that change.

In mature systems, it is common for a “simple” change to cause unexpected
consequences which take more work to fix than the original change … not to
mention other consequences.

4

Good analysis is good risk management.

Good analysis is like a surgeon knowing where to cut and knowing where
not to cut.

Good analysis is understanding before doing.

Not doing thorough analysis can mean unexpected results and much longer
cycles to complete changes.

5

6

The simplest analysis problem in ABL is finding out basic information about a
specific compile unit which it the current focus of attention.

COMPILE LIST
Built-in to ABL compiler
Illustrates what’s in the program with includes in-line
Resolves pre-processor code (i.e. code which is evaluated before compile,
e.g. operating system dependent code)
Shows scope of transactions and buffers

7

COMPILE XREF
Built-in to ABL compiler.
Shows index usage of each line which references an index.
Shows table and field access by line.
Shows string references and other less frequently useful information.

8

XML XREF in OpenEdge Architect
Shows index usage, table and field access
by line (same as COMPILE XREF) but in XML form:

Easier to parse into database
Harder for human to read

9

10

In addition to wanting to know about a single compile unit, one often wants to
know about bigger issues like where a particular table or routine is accessed
throughout the code base, e.g., when one needs to make a change and
wants to see the impact.

Database of XREF Data
•XREF data of each compile unit is loaded into a database which allows
querying, e.g. of all places where a table or index is used.
•Many people have built XREF databases.
•XREF databases exist in several frameworks.
•No standard implementation.
•I am currently working on an open source offering in this area.

11

The closest thing to a “standard” implementation which includes an XREF
database of this type is the Roundtable TSMS Software Configuration
Management system. It is a commercial product and does a lot more than
just provide the XREF data. They also store searchable information like
annotations, properties, methods, internal procedures, shared variables, etc.

12

13

Another common analysis task is to find references to a table, procedure,
variable, etc. in the code. A related task is to compare two or more sets of
code to determine what the differences are between them.

OpenEdge Architect
Search and replace can be performed in current file, workspace or selected

resources (directory, files, CTRL + click, etc.).
Has problem shared by non-ABL tools where search is performed on string

patterns, not ABL syntax (e.g. search for string will find in comment or
variable name).

Ctrl-F and Ctrl-H in OEA

14

OpenEdge Architect
Search and replace can be performed in current file, workspace or selected

resources (directory, files, CTRL + click, etc.).

15

OpenEdge Architect
Search and replace can be performed in current file, workspace or selected

resources (directory, files, CTRL + click, etc.).
Has problem shared by non-ABL tools where search is performed on string

patterns, not ABL syntax (e.g. search for string will find in comment or
variable name).

Ctrl-F and Ctrl-H in OEA

16

Non-ABL-specific Search Tools
• Many tools are available.
• Share problem of being unaware of ABL syntax.
• Can be used with Version 9 and earlier code (i.e., no need for

OpenEdge Architect).
• Able to search a body of code without creating a project in OpenEdge

Architect (e.g. search entire codebase).

Other tools nice interface, but still not ABL specific

17

File and Directory Comparison Tools
• Many tools available which compare 2 different versions of programs.
• Preferred are tools which can compare 3 items (programs or

directories). Handy when base program has been modified by 2
programmers and need to figure out how to bring them together again.

• Araxis Merge http://www.araxis.com/merge/
• Possibly KDiff3 http://kdiff3.sourceforge.net/

(no experience with this one yet)

18

See slide at end. Very quick illustration of finding differences in two trees.

Demo was performed from own laptop compare IS/rc/rcal with /tmp and
show program

19

20

Sometimes, the best way to do analysis is to record design decisions when
the code is created in the first place because then you can just read how
something works without having to figure it out from scratch. While
comments provide some assistance here, one can do much better.

Commercial product “formerly” available from Joanju:
http://joanju.com/autodox2/index.php
Parses code and annotations
Handles classes and procedures
Does not handle anything beyond 10.2B

21

• Product to be available from Consultingwerk and Riverside Software.
• Based on two new tasks in PCT.
• Parses code and annotations.
• Produces HTML documentation.
• Applicable only to OO code. Gilles might extend PCT tasks to .ps later.

Exchange Session: Automated Class Reference Generation by Mike
Fechner

22

Need some samples and more information from Mike.

Demo results from
http://help.consultingwerkcloud.com/smartcomponent_library/trunk/index.htm
l

23

24

So far, we have been looking only at static analysis, i.e., the code sitting in a
file on a disk. Some problems, though, are only easily identified when the
code is running. Other than putting in message or log statements, there are
several tools which can help us understand running code.

25

26

The profiler is built into standard ABL, but is not documented or officially
supported. There is a document at the URL shown which briefly documents
a GUI tool for using the profiler. See also $DLC/src/samples/profiler
depending on the installation choices you have made. There is a
Knowledgebase entry documenting the options for the profiler object at
http://knowledgebase.progress.com/articles/Article/19495?q=profiler+handle
&l=en_US&fs=Search&pn=1

27

To use:
• -profile run time parameter. Profiles whole session, but does not require

modifying code.
• A GUI tool which can be found at

http://communities.progress.com/pcom/docs/DOC-2808 or in
$DLC/src/samples/profiler depending on the installation options chosen.

• The built-in profiler object which allows selective execution on selected
blocks of code, but does require modifying the code. This is documented
in a Knowledgebase entry at
http://knowledgebase.progress.com/articles/Article/19495?q=profiler+han
dle&l=en_US&fs=Search&pn=1

28

Here is a very simple example using the built-in Profiler object.

29

30

31

32

Improving code quality isn’t analysis, per se, but can make it less likely to
encounter problems in production and make it easier to understand code
during maintenance. Moreover, some of the tools used for code quality
improvement can also be used for certain analytical issues. There are
many behavioral approaches to code quality, but today I am focused
specifically on tools so I am going to look at tools which can read and
understand the syntactic structure of the code.

What Is Parsing?
Parsers analyze code in same way compiler does, recognizing and
resolving:
•tokens
•keywords
•table names
•field names

33

Proparse
•Parses code and creates abstract symbol tree in memory.
•Open source product created and updated by John Green (Joanju).
•Available at http://www.joanju.com/proparse/index.php

34

ProLint
•Uses Proparse to apply wide variety of code quality tests which help:

•Avoid errors
•Impose shop standards

•Open source product created by Jurjen Dijkstra with many contributors.
•Available at http://www.oehive.org/prolint/download

35

Proparse Scripting
•ABL code can be written which uses Proparse to perform special tasks
outside of Proparse’s purview, e.g. find all input and output statements in a
set of code (finds all places where code interacts with external files).
•Searches are ABL syntax aware.
•Write it yourself!

36

Joanju Analyst
•Uses Proparse, reads all code, builds database.
•Commercial tool available from Joanju at:
http://joanju.com/analyst/index.php

37

•Data base includes:
•Connections between run statements, methods, procedures.
•Connections to database tables (to field level).
•Dynamic call resolution (uses combination of automatic analysis and
hints when unable to resolve calls).

38

Joanju Analyst (con’t)
• Html browser allows one to follow links:

• From the run statement to the code that is run.
• From an internal procedure or method to all the places which

call it (where used).
• Very flexible, ABL syntax aware search tool.
• Produces Bill of Materials output (XML) which drives ABL2UML.
• Used for productivity, impact and flow analysis, debugging and re-

engineering.

Analyst is no longer marketed, but can be available by special
arrangement. See me if interested.

Watch videos?

39

40

Tools discussed so far provides a utilities to help explore the code, allow
tracing some feature of the code, or examines how the code behaves. But,
what if one is looking for the big picture, how it all fits together, the structure
of the interaction of the code. For this, we want pictures!

Among those emphasizing analysis and design, the strongly predominant
way of expressing that design is UML (Unified Modeling Language).

UML was created in the mid-1990s to unify a diverse set of modeling
languages which had grown up, primarily for OO development. A standards
body, the OMG or Object Management Group was created to oversee this
and other standards and UML has undergone considerable expansion and
development since the original version.

Different people use UML in different ways. Some use it simply as a
sketching tool, something to put on a white board or in a document to
facilitate discussion. Some will use it more completely to do a detailed
analysis of a system and then write code from that design. They may or
may not keep the design in sync with the code as the system evolves,
although it is usually regrettable if they don’t. And, there are those … which
is what interests us today … who actually generate the working code directly
from the model.

41

Enterprise Architect

Commercial tool http://www.sparxsystems.com/
Most favored in ABL community because support for using OpenEdge
database as repository and supporting tools.
OE datatypes available:

Dr. Thomas Mercer-Hursh http://www.oehive.org/node/1073
Phil Magnay http://communities.progress.com/pcom/docs/DOC-6208

42

ABL2UML
•Open source tool created in 2007 by Dr. Thomas Mercer-Hursh
•Takes schema from database and Bill of Materials from Analyst and builds
UMLcomponent diagram which has

•all code units down to internal procedures, function, method level
(detail level)
•all links to detail level
•summary of compile unit connections
•database tables and fields
•connections between code units (including tables and fields)
•how/when table/field is read, modified or written
•all where clauses which connect code

•Contains diagram builder to automatically and flexibly build uml diagrams at
any level of detail starting with any compile unit, table, field.

43

ABL2UML
•Open source tool created in 2007 by Dr. Thomas Mercer-Hursh
•Takes schema from database and Bill of Materials from Analyst and builds
UMLcomponent diagram which has

•all code units down to internal procedures, function, method level
(detail level)
•all links to detail level
•summary of compile unit connections
•database tables and fields
•connections between code units (including tables and fields)
•how/when table/field is read, modified or written
•all where clauses which connect code

•Contains diagram builder to automatically and flexibly build uml diagrams at
any level of detail starting with any compile unit, table, field.

44

ABL2UML Status
Revision of tool currently under discussion by Mike Fechner, David Abdala
and Dr. Thomas Mercer-Hursh.
Goals:

Move to OO
Incremental builds
Use pieces separately, e.g., schema only
Support non-OpenEdge databases
Support .df alternative to direct schema

And more!

45

46

47

48

49

50

51

Thank you.

52

And now for questions.

53

Slide equivalent of demo.

54

Need some samples and more information from Mike.
Demo results from
http://help.consultingwerkcloud.com/smartcomponent_library/trunk/index.htm
l

55

Demo ProLint on laptop

56

57

Demo scripting locally

58

Demo scripting locally

59

60

61

62

63

64

65

66

67

Here are some links for more information. Generally, look at OpenEdge
Hive, Joanju.com, and my own website, Cintegrity.com.

68

69

Here are some links for more information.

